Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 34(13): 63-71, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696609

RESUMEN

To investigate potential correlations between the susceptibility values of certain brain regions and the severity of disease or neurodevelopmental status in children with autism spectrum disorder (ASD), 18 ASD children and 15 healthy controls (HCs) were recruited. The neurodevelopmental status was assessed by the Gesell Developmental Schedules (GDS) and the severity of the disease was evaluated by the Autism Behavior Checklist (ABC). Eleven brain regions were selected as regions of interest and the susceptibility values were measured by quantitative susceptibility mapping. To evaluate the diagnostic capacity of susceptibility values in distinguishing ASD and HC, the receiver operating characteristic (ROC) curve was computed. Pearson and Spearman partial correlation analysis were used to depict the correlations between the susceptibility values, the ABC scores, and the GDS scores in the ASD group. ROC curves showed that the susceptibility values of the left and right frontal white matter had a larger area under the curve in the ASD group. The susceptibility value of the right globus pallidus was positively correlated with the GDS-fine motor scale score. These findings indicated that the susceptibility value of the right globus pallidus might be a viable imaging biomarker for evaluating the neurodevelopmental status of ASD children.


Asunto(s)
Trastorno del Espectro Autista , Encéfalo , Hierro , Imagen por Resonancia Magnética , Humanos , Trastorno del Espectro Autista/diagnóstico por imagen , Masculino , Femenino , Niño , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Hierro/metabolismo , Hierro/análisis , Preescolar , Mapeo Encefálico/métodos , Sustancia Blanca/diagnóstico por imagen , Globo Pálido/diagnóstico por imagen
2.
J Magn Reson Imaging ; 59(2): 648-658, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37249021

RESUMEN

BACKGROUND: The promoter variant rs17111237 in the CEP128 closely relates to radiotherapy (RT)-related brain necrosis in nasopharyngeal carcinoma (NPC) patients. PURPOSE: To explore RT-related dynamic alterations in brain morphology and their potential genetic mechanism, and to explore the modulatory effects of CEP128 genetic variants on RT-related brain morphological alterations in NPC patients. STUDY TYPE: Prospective, longitudinal. POPULATION: One hundred one patients with histopathologic ally-proven NPC (age 41.64 ± 9.63, 46 male), analyzed at baseline (pre-RT), 3-months post-RT and 6 months post-RT, and 19 sex-, age- and education-matched healthy controls. FIELD STRENGTH/SEQUENCE: 3D gradient echo brain volume (3D-BRAVO) and diffusion-weighted single-shot spin-echo echo-planar sequences at 3.0 T. ASSESSMENT: rs17111237 in CEP128 was detected by Sanger sequencing. Structural and diffusion images were processed with FreeSurfer and FSL. Morphometric similarity network (MSN) was constructed with nine cortical indices derived from structural and diffusion images. STATISTICAL TESTS: One-way ANOVA, chi-square test. Pearson's correlation analysis was conducted to measure the relationship between CEP128 gene-expression level in human brain and MSN alterations. Repeated analysis of variance performed to assess group differences in MSN and the modulatory effects of the CEP128 gene within patients. Significance level: P < 0.05, false-discovery rate correction. RESULTS: RT-related significant widespread MSN alterations were observed in the cortices of NPC patients. Notably, regional MSN alterations had a weak but significant negative correlation with the cortical pattern of CEP128 gene expression (r = -0.152). Furthermore, rs17111237 in the CEP128 had significant modulatory effects on the observed MSN alterations in NPC patients, with the modulatory effects being most obvious at 3 months post-RT. CONCLUSIONS: MSN has potential to serve as a sensitive biomarker to detect RT-related brain injury. Inter-brain regional and inter-patient variability of RT-related brain injuries may be attributed to the cortical expression of the CEP128 gene and the modulatory effects of the promoter variant rs17111237 in CEP128. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Lesiones Encefálicas , Neoplasias Nasofaríngeas , Humanos , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Lesiones Encefálicas/patología , Imagen por Resonancia Magnética/métodos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patología , Estudios Prospectivos
3.
Brain Imaging Behav ; 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38147272

RESUMEN

Gray matter (GM) atrophy is well documented in patients with major depressive disorder (MDD), but its underlying mechanism remains unknown. This study aimed to examine the GM atrophy in MDD patients with diverse suicidal ideations (SIs) and to explore whether those alterations were driven by connections. GM volume was estimated in 163 patients with recurrent MDD (comprising 122 with SI [MDDSI] and 41 without SI [MDDNSI]) and 134 health controls (HCs). A two-sample t-test was used to identify GM volume abnormalities in MDD patients and their subgroups. Functional connectivity was computed between pairs of aberrant GM in both patients and HCs, which were further compared with the connectivity of random brain regions. A permutation test was performed to assess its significance. Propensity score matching (PSM) was further performed to validate the main results. Compared with HCs, the MDDNSI group exhibited GM atrophy in 24 regions, with the largest effect sizes found in the frontal and parietal lobes, while the MDDSI group exhibited more widespread GM atrophy involving 49 regions, with the largest effect sizes in the frontal lobe, parietal lobe, temporal lobe, and the limbic system. Furthermore, patients and HCs exhibited significantly increased functional connectivity between regions with GM atrophy compared with randomly selected regions (p < 0.05). PSM analysis presented similar results to the main analysis. MDD patients had diverse GM atrophy features according to their SI tendency. Moreover, connectome architecture modulates the GM atrophy in MDD patients, implying the possibility that connections drive these pathological changes.

4.
J Affect Disord ; 322: 173-179, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370913

RESUMEN

BACKGROUND: Suicide risk stratification and individual-level prediction among major depressive disorder (MDD) is important but unrecognized. Here, we construct models to detect suicidality in MDD using machine learning (ML) and whole-brain functional connectivity (FC). METHODS: A cross-sectional assessment was conducted on 200 subjects, including 126 MDD with high suicide risk (HSR; 73 patients with suicidal ideation [SI], 53 patients with suicidal attempts [SA]), 36 patients with low suicide risk (LSR) and 38 healthy controls (HCs). Whole-brain FC features were calculated, the least absolute shrinkage and selection operator (LASSO) method was used for feature selection. A support vector machine (SVM) was performed to build models to distinguish MDD from HCs, and for suicide risk stratification among MDD. Leave-one-out cross-validation (LOOCV) was performed for validation. RESULTS: The models constructed using SVM on whole-brain FC had powerful classification efficiency in screening MDD from HCs (accuracy = 88.50 %), and in suicide risk stratification among MDD patients (with accuracy = 84.56 % and 74.60 % in classifying patients with HSR or LSR, and SA or SI, respectively). Subsequent analysis demonstrated that intra-network dysconnectivity in the sensorimotor network and inter-network dysconnectivity between the default and dorsal attention network could characterize HSR and SA in MDD, separately. LIMITATIONS: This study was a single center cohort study without external validation. CONCLUSION: These findings indicate ML approaches are useful in suicide risk stratification among MDD based on whole-brain FC, which may help to identify individuals with different suicide risks in MDD and provide an individual-level prediction.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Estudios Transversales , Estudios de Cohortes , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Ideación Suicida , Aprendizaje Automático , Medición de Riesgo
5.
Transl Psychiatry ; 12(1): 383, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097160

RESUMEN

Major depressive disorder (MDD) is a severe brain disease associated with a significant risk of suicide. Identification of suicidality is sometimes life-saving for MDD patients. We aimed to explore the use of dynamic functional network connectivity (dFNC) for suicidality detection in MDD patients. A total of 173 MDD patients, including 48 without suicide risk (NS), 74 with suicide ideation (SI), and 51 having attempted suicide (SA), participated in the present study. Thirty-eight healthy controls were also recruited for comparison. A sliding window approach was used to derive the dFNC, and the K-means clustering method was used to cluster the windowed dFNC. A linear support vector machine was used for classification, and leave-one-out cross-validation was performed for validation. Other machine learning methods were also used for comparison. MDD patients had widespread hypoconnectivity in both the strongly connected states (states 2 and 5) and the weakly connected state (state 4), while the dysfunctional connectivity within the weakly connected state (state 4) was mainly driven by suicidal attempts. Furthermore, dFNC matrices, especially the weakly connected state, could be used to distinguish MDD from healthy controls (area under curve [AUC] = 82), and even to identify suicidality in MDD patients (AUC = 78 for NS vs. SI, AUC = 88 for NS vs. SA, and AUC = 74 for SA vs. SI), with vision-related and default-related inter-network connectivity serving as important features. Thus, the dFNC abnormalities observed in this study might further improve our understanding of the neural substrates of suicidality in MDD patients.


Asunto(s)
Trastorno Depresivo Mayor , Suicidio , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Ideación Suicida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...